An operator-difference scheme for abstract Cauchy problems

نویسندگان

  • Allaberen Ashyralyev
  • Mehmet Emir Koksal
  • Ravi P. Agarwal
چکیده

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Second-order hyperbolic equation Difference scheme Unconditionally stable Stability Initial-value problem Variable coefficient Numerical solution a b s t r a c t An abstract Cauchy problem for second-order hyperbolic differential equations containing the unbounded self-adjoint positive linear operator A(t) with domain in an arbitrary Hilbert space is considered. A new second-order difference scheme, generated by integer powers of A(t), is developed. The stability estimates for the solution of this difference scheme and for the first-and second-order difference derivatives are established in Hilbert norms with respect to space variable. To support the theoretical statements for the solution of this difference scheme, the numerical results for the solution of one-dimensional wave equation with variable coefficients are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Regularization of Three-Level Difference Schemes with Unbounded Operator Coefficients in Banach Spaces

Abstract. The problem of stability of difference schemes for second-order evolution problems is considered. Difference schemes are treated as abstract Cauchy problems for difference equations with operator coefficients in a Banach or Hilbert space. To construct stable difference schemes the regularization principle is employed, i.e., one starts from any simple scheme (possibly unstable) and der...

متن کامل

Moment sequences and abstract Cauchy problems

We give a new characterization of the solvability of an abstract Cauchy problems in terms of moment sequences, using the resolvent operator at only one point.

متن کامل

Approximation Theorems for the Propagators of Higher Order Abstract Cauchy Problems

In this paper, we present two quite general approximation theorems for the propagators of higher order (in time) abstract Cauchy problems, which extend largely the classical Trotter-Kato type approximation theorems for strongly continuous operator semigroups and cosine operator functions. Then, we apply the approximation theorems to deal with the second order dynamical boundary value problems.

متن کامل

Hopf bifurcation for non-densely defined Cauchy problems

In this paper, we establish a Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille–Yosida operator. The theorem is proved using the center manifold theory for nondensely defined Cauchy problems associated with the integrated semigroup theory. As applications, the main theorem is used to obtain a known Hopf bifurcation resul...

متن کامل

Structural Stability for Ill-Posed Problems in Banach Space

We prove Hölder-continuous dependence results for the difference between solutions of certain ill-posed and approximate well-posed problems in both Hilbert and Banach spaces. We use operator-theoretic methods, including C-semigroups, to treat the abstract Cauchy problem du dt = Au, u(0) = χ, 0 ≤ t < T, where the operator −A is the infinitesimal generator of a holomorphic semigroup.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2011